Abstract

The Ca2+-dependent retrograde inhibition of inhibitory postsynaptic currents (depolarization-induced-suppression of inhibition; DSI) was investigated using fura-2 Ca2+ measurements and whole-cell patch-clamp recordings in rat cerebellar Purkinje cells. DSI was studied in cells loaded with different concentrations of the Ca2+ chelators BAPTA and EGTA. A concentration of 40 mM BAPTA was required to significantly interfere with DSI, whereas 10 mM BAPTA was almost ineffective. 40 mM EGTA reduced DSI, but was less effective than 40 mM BAPTA. Ratiometric Ca2+ measurements indicated that the extent of DSI depended critically on the changes in intracellular calcium ([Ca2+]i). The relationship between DSI and peak Delta[Ca2+]i could be approximated by a hyperbolic function, with apparent half-saturation concentrations of 200 and 40 nM for dendritic and somatic [Ca2+]i, respectively. It is suggested that DSI is due to somatodendritic exocytosis of a retrograde messenger, and that this exocytosis is highly sensitive to [Ca2+]i.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.