Abstract

E2F-1 plays a crucial role in the regulation of cell-cycle progression at the G1-S transition. In keeping with the fact that, when overproduced, it is both an oncoprotein and a potent inducer of apoptosis, its transcriptional activity is subject to multiple controls. Among them are binding by the retinoblastoma gene product (pRb), activation by cdk3, and S-phase-dependent down-regulation of DNA-binding capacity by cyclin A-dependent kinase. Here we report that E2F-1 is actively degraded by the ubiquitin-proteasome pathway. Efficient degradation depends on the availability of selected E2F-1 sequences. Unphosphorylated pRb stabilized E2F-1, protecting it from in vivo degradation. pRb-mediated stabilization was not an indirect consequence of G1 arrest, but rather depended on the ability of pRb to interact physically with E2F-1. Thus, in addition to binding E2F-1 and transforming it into a transcriptional repressor, pRb has another function, protection of E2F-1 from efficient degradation during a period when pRb/E2F complex formation is essential to regulating the cell cycle. In addition, there may be a specific mechanism for limiting free E2F-1 levels, failure of which could compromise cell survival and/or homeostasis.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call