Abstract

Trans polyunsaturated fatty acids are formed during heat treatments of vegetable oils from polyunsaturated fatty acids containing cis double bonds. After dietary intake, they are distributed in the body and are incorporated into nervous tissues including the retina. Since nervous tissues are known to be rich in n-3 fatty acids such as docosahexaenoic acid (DHA), we studied the ability of the retina and the brain to incorporate trans isomers of DHA formed in vivo from the dietary precursor trans alpha-linolenic acid. Wistar rats were fed with trans isomers of alpha-linolenic acid for 21 months. A linear incorporation of trans DHA and a decrease in cis DHA was observed in the retina, whereas no major changes were observed in the brain. In parallel to the modifications in retinal cis and trans DHA levels, the retinal functionality evaluated by the electroretinogram showed defects in animals that consumed trans alpha-linolenic acid. These results suggest that the mechanisms leading to the incorporation of cis and trans fatty acids are quite different in the retina when compared to the brain and the liver, the retina being more susceptible to changes in the dietary lipid contribution.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.