Abstract

Cell surface sugar 5,7-diacetyl pseudaminic acid (Pse5Ac7Ac) is a bacterial analogue of the ubiquitous sialic acid, Neu5Ac, and contributes to the virulence of a number of multidrug resistant bacteria, including ESKAPE pathogens Pseudomonas aeruginosa, and Acinetobacter baumannii. Despite its discovery in the surface glycans of bacteria over thirty years ago, to date no glycosyltransferase enzymes (GTs) dedicated to the synthesis of a pseudaminic acid glycosidic linkage have been unequivocally characterised in vitro. Herein we demonstrate that A. baumannii KpsS1 is a dedicated pseudaminyltransferase enzyme (PseT) which constructs a Pse5Ac7Ac-α(2,6)-Glcp linkage, and proceeds with retention of anomeric configuration. We utilise this PseT activity in tandem with the biosynthetic enzymes required for CMP-Pse5Ac7Ac assembly, in a two-pot, seven enzyme synthesis of an α-linked Pse5Ac7Ac glycoside. Due to its unique activity and protein sequence, we also assign KpsS1 as the prototypical member of a previously unreported GT family (GT118).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.