Abstract

The restricted singular value decomposition (RSVD) is the factorization of a given matrix, relative to two other given matrices. It can be interpreted as the ordinary singular value decomposition with different inner products in row and column spaces. Its properties and structure are investigated in detail as well as its connection to generalized eigenvalue problems, canonical correlation analysis and other generalizations of the singular value decomposition. Applications that are discussed include the analysis of the extended shorted operator, unitarily invariant norm minimization with rank constraints, rank minimization in matrix balls, the analysis and solution of linear matrix equations, rank minimization of a partitioned matrix and the connection with generalized Schur complements, constrained linear and total linear least squares problems, with mixed exact and noisy data, including a generalized Gauss-Markov estimation scheme. Two constructive proofs of the RSVD in terms of other generalizations of the ordinary singular value decomposition are provided as well.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.