Abstract

The biomass of invertebrate detritivores is an important driver of multiple ecosystem functions, yet little is known about how it changes in the context of global change. Taking Collembola communities as our focal groups, we conducted a study at the Global Change Experimental Facility (GCEF) in central Germany to assess how climate change (i.e., increased temperature by ∼0.55 °C across seasons, and the altered precipitation patterns by ∼9 % increase in spring and autumn, and ∼21 % reduction in summer) and intensive land use (i.e., from extensively-used grassland to conventional cropland) would shift the biomass patterns of Collembola and their different life forms. Our results show that the biomass of different Collembola life forms differed in their response to the changes in climate and land use. Specifically, the population biomass of surface-dwelling Collembola significantly decreased under future climate scenario and intensive land use, while the biomass of soil-living Collembola responded less. Importantly, Collembola biomass was decreased by (i) climate change-induced body size shrinkage, and (ii) intensive land use-induced density reduction. These results suggest that different environmental change drivers are able to reduce soil microarthropod biomass via dissimilar mechanisms.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call