Abstract

Vibrio cholerae is an intestinal pathogen that can cause severe diarrheal disease. The disease has afflicted millions of people since the 19th century and has aroused global concern. The Vibrio Pathogenicity Island-2 (VPI-2) is a 57.3 kb region, VC1758-VC1809, which is present in choleragenic V. cholerae. At present, little is known about the function of VC1795 in the VPI-2 of V. cholerae. In this study, the intestinal colonization ability of the ΔVC1795 strain was significantly reduced compared to that of the wild-type strain, and the colonization ability was restored to the wild-type strain after VC1795 gene replacement. This result indicated that the VC1795 gene plays a key role in the intestinal colonization and pathogenicity of V. cholerae. Then, we explored the upstream and downstream regulation mechanisms of the VC1795 gene. Cyclic adenylate receptor protein (CRP) was identified as being located upstream of VC1795 by a DNA pull-down assay and electrophoretic mobility shift assays (EMSAs) and negatively regulating the expression of VC1795. In addition, the results of Chromatin immunoprecipitation followed by sequencing (ChIP-seq), EMSAs, and Quantitative Real-Time Polymerase Chain Reaction (qRT-PCR) indicated that VC1795 directly negatively regulates the expression of its downstream gene, VC1794. Furthermore, by using qRT-PCR, we hypothesized that VC1795 indirectly positively regulates the toxin-coregulated pilus (TCP) cluster to influence the colonization ability of V. cholerae in intestinal tracts. In short, our findings support the key regulatory role of VC1795 in bacterial pathogenesis as well as lay the groundwork for the further determination of the complex regulatory network of VC1795 in bacteria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call