Abstract

We previously reported that the two-component system MacRS regulates morphogenesis and production of the blue-pigmented antibiotic actinorhodin (ACT) in Streptomyces coelicolor. In this study, the role of MacRS was further extended to include control of the production of the red-pigmented antibiotic undecylprodigiosin (RED) and the calcium-dependent antibiotic (CDA), and control of other important cellular activities. Our data indicated that disruption of the MacRS TCS reduced production not only of ACT but also of RED and CDA. RNA-Seq analysis revealed that genes involved in both secondary metabolism and primary metabolism are differentially expressed in the MacRS deletion mutant ΔmacRS. Moreover, we found that genes of the Zur regulon are also markedly downregulated in ΔmacRS, suggesting a role for macRS in zinc homeostasis. In addition to previously identified MacR sites with strong matches to the MacR consensus recognition sequence, a genome-wide search revealed over one hundred less-stringent matches, including potential sites upstream of absR1, crgA, and smeA. Electrophoretic mobility shift assays demonstrated that MacR binds some of these sites in vitro. Although there is no strong MacR site upstream of the ACT regulatory gene actII-orf4 (sco5085), we showed that an engineered MacR site enhanced ACT production, providing an approach for modulating production of useful compounds. Altogether, our work suggests an important role for MacRS in a range of cellular activities in Streptomyces and its potential application in strain engineering.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call