Abstract

Bacterial cells communicate with one another using chemical signaling molecules. This phenomenon is termed quorum sensing (QS). QS in Klebsiella pneumoniae is mediated by the synthesis of interspecies autoinducer 2 (AI-2), a furanosyl borate diester molecule. The response of Type 2 QS to environmental cues such as carbon sources, the initial pH of the medium, and boracic acid was investigated in the present study using a Vibrio harveyi BB170 reporter assay and quantitative reverse transcription-polymerase chain reaction (qRT-PCR) analysis. The results show that glucose can affect AI-2 synthesis to the greatest extent, and 3.0% glucose can stimulate K. pneumoniae to produce more AI-2, with a four times increase in activity compared with that of the control culture. According to our previous research, Type 2 QS in K. pneumoniae is luxS dependent. Therefore, the close relationship between glucose concentration and luxS transcription level was confirmed with qRT-PCR technology. The results show that the response of QS to a fluctuating glucose concentration was observed as a change in the amount of luxS RNA transcripts. A maximum of luxS transcription appeared during the exponential growth phase when the glucose concentration was 30.0 g/L. At the same time, AI-2 production was also slightly impacted by the low initial pH. It is noteworthy that the addition of boracic acid at microdosage (0.1 g/L) can also induce AI-2 synthesis. Presumably, in K. pneumoniae, the 4,5-dihydroxy-2,3-pentanedione cyclizes by the addition of borate and loss of water, is hydrated, and is converted to the final AI-2 signaling molecule.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call