Abstract

The operation of two wheelers frequently encounters off-road terrain comprising loose particles of sand and soil, which setup three-body abrasive wear phenomena affecting the tire life. To evaluate the response of two-wheeler tires on such terrains, the dry abrasive wear behavior of two-wheeler tires was experimentally determined using a three-body wear test apparatus. Three different mixtures of sand and granite dust of varying grit size, 100, 200, and 300 µm, were employed to represent the abrasive cluster, typical of the varying roughness on off-road terrains. Taguchi’s L27 (33) orthogonal array was applied to analyze the specific wear rate as a response to three parameters—load, speed, and road roughness—separately for front and rear two-wheeler tires. Variation of hardness and wear pattern observation for the front and rear tires were carried out to oversee the surface deterioration. A numerical model based on abrasive grit-tire surface interaction was developed for comparison with the experimental results.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.