Abstract

Abstract A global atmosphere–ocean–sea ice general circulation model (GCM) is used in simulations of climate with present-day atmospheric CO2 concentrations, and with CO2 increasing to double the present-day values. The Parallel Climate Model includes the National Center for Atmospheric Research (NCAR) atmospheric GCM, the Los Alamos National Laboratory ocean GCM, and the Naval Postgraduate School dynamic–thermodynamic sea ice model. The ocean and sea ice grids are at substantially higher resolution than has been previously used in global climate models. The model is implemented on distributed, parallel computer architectures to make computation on the high-resolution grids feasible. The sea ice dynamics uses an elastic–viscous–plastic ice rheology with an explicit solution of the ice stress tensor, which has not previously been used in a coupled, global climate model. The simulations of sea ice and the polar climate in the present-day experiment are compared with observed ice and climate data. The ice co...

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call