Abstract

The relationship between the hydrological cycle and the temperature is rather complex and of great importance to human socioeconomic activities. The prevailing theory suggests that as temperature increases the hydrological cycle is intensified. Practically, this means more and heavier precipitation. However, the exact magnitude of hydrological cycle response and its spatio-temporal characteristics is still under investigation. Looking back in Earth’s hydroclimatic history, it is easy to find some periods where global temperature was substantially different than present. Here, we examine some of these periods to present the current knowledge about past hydrological cycle variability (specifically precipitation), and its relationship to temperature. The periods under investigation are the Mid-Miocene Climate Optimum, the Eemian Interglacial Stage, the Last Glacial Maximum, the Heinrich and Dansgaard–Oeschger Events, the Bølling–Allerød, the Younger Dryas, the 8.2 ka event, the Medieval Climate Anomaly, and the Little Ice Age. We report that the hypothesis that a warmer climate is a wetter climate could be an oversimplification, because the response of water cycle appears to be spatio-temporally heterogeneous.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.