Abstract

The ionosphere at high latitudes is the site of important effects in space weather. These include strong electrical currents that may disrupt power systems through induced currents and density irregularities that can degrade HF and satellite communication links. With the impetus provided by the National Space Weather Program, the radars of the Super Dual Auroral Radar Network have been applied to the real‐time specification (“nowcasting”) of conditions in the high‐latitude ionosphere. A map of the plasma convection in the northern high‐latitude ionosphere is continually generated at the Johns Hopkins University Applied Physics Laboratory (JHU/APL) SuperDARN web site using data downloaded in real time from the radars via Internet connections. Other nowcast items include information on the conditions of HF propagation, the spatial extent of auroral effects, and the total cross polar cap potential variation. Time series of various parameters and an animated replay of the last 2 hours of convection patterns are also available for review. By comparing with simultaneous measurements from an upstream satellite, it is possible to infer the effective delay from the detection of changes in the solar wind at the satellite to the arrival of related effects in the high‐latitude ionosphere. We discuss the space weather products available from the JHU/APL SuperDARN web site and their uses by simulating a nowcast of the ionosphere on April 6, 2000, during the arrival of a coronal mass ejection (CME)‐related shock. The nowcast convection pattern in particular satisfies a critical need for timely, comprehensive information on ionospheric electric fields.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call