Abstract
To understand the mechanisms that trigger changes in chlorophyll a and species composition in the phytoplankton of the surf-zone at Cassino Beach (RS), we performed two short nutrient-enrichment experiments (4–5days each) during the summer and winter of 2010. Seawater was incubated under controlled conditions of temperature (summer 25±3°C, winter 18±1°C), salinity (summer 28, winter 26) and irradiance (100μmolm−2s−1). Dissolved inorganic nutrients were added in various concentrations in the summer (silicate, Si; nitrate, N; phosphate, P) and winter (N, P) experiments. Samples were taken daily for cell counts and chlorophyll a analysis. In both experiments, chlorophyll a values and cell density showed a significant increase (mainly diatoms) in the treatments with nitrate addition, regardless of the proportion added. In the summer experiment, the largest chlorophyll a increase, approximately threefold (31.5 to 89.5μgL−1), was observed in the NP treatment due to the growth of Asterionellopsis glacialis (Castracane) Round, Skeletonema tropicum Cleve, Thalassiosira sp. Cleve and Pseudo-nitzschia spp. Peragallo. The maximum growth was obtained in the SiNP treatment for S. tropicum (μ=0.7), Thalassiosira (μ=1.9) and Pseudo-nitzschia (μ=1.3) and in the SiN treatment for A. glacialis (μ=1.0). In the winter experiment, the chlorophyll a content increased 4.2 and 5.5 times, respectively, in the N and NP treatments (maxima 38.8μgL−1 and 31.5μgL−1), where A. glacialis (μ=1.7–1.9) and Cylindrotheca closterium (Ehrenberg) Reimann & J.C. Lewin (μ=1.0–1.96) showed the highest amount of growth. These results indicate that nitrate is the most important nutrient controlling phytoplankton chlorophyll a at sandy Cassino Beach. However, the responses of different species to enrichment during the summer and winter indicated that other factors also played a role. A. glacialis, present during both seasons, presented the highest growth rate during the winter, whereas during the summer it was independent of nutrient enrichment but coincided with the lowest growth of S. tropicum. This finding suggested the occurrence of allelopathic interactions between these species. During the summer, multi-enrichment (SiNP) favoured the best growth of S. tropicum, Pseudo-nitzschia spp. and Thalassiosira sp. These results indicated that the phytoplankton composition and diversity in the surf zone of Cassino Beach are shaped by the availability of silicate and phosphorus as well as by the availability of nitrate.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Journal of Experimental Marine Biology and Ecology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.