Abstract

Plant anchorage is governed by complex, finely regulated mechanisms that occur at a morphological, architectural and anatomical level. Spanish broom (Spartium junceum) is a woody plant frequently found on slopes--a condition that affects plant anchorage. This plant grows throughout the Mediterranean area where it plays an important role in preventing landslides. Spanish broom seedlings respond promptly to slope by altering stem and root morphology. The aim of this study was to investigate the mechanisms whereby the root system of Spanish broom seedlings adapts to ensure anchorage to the ground. Seedlings were grown in tilted and untilted pots under controlled conditions. The root apparatus was removed at different times of growth and subjected to morphological, biomechanical and molecular analyses. In slope-grown seedlings, changes in root system morphology, pulling strength and chemical lignin content, all features related to plant anchorage in the soil, were related to seedling age. cDNA-AFLP analysis revealed changes in the expression of several genes in root systems of slope-grown plants. BLAST analysis showed that some differentially expressed genes are homologues of genes induced by environmental stresses in other plant species, and/or are involved in the production of strengthening materials. Plants use various mechanisms/strategies to respond to slope depending on their developmental stage.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.