Abstract

Myopia and astigmatism are two primary types of refractive errors characterized by inaccurate focusing images on the retina. This study aimed to investigate the response characteristics of Retinal Ganglion Cells (RGCs), represented by alpha (α) RGCs, when exposed to focused, simulated spherically defocused images and astigmatically defocused images projected onto mouse retinas.Negative pressure was applied to stretch the soma of RGC in vitro to simulate myopia using a 7–8 μm diameter glass microelectrode, resulting in a 5% increase in the cell's diameter. A custom-made device was utilized to project spherically (equal to ±10 and ± 20 D) and astigmatically (+6.00 D) defocused images onto the retinas. As a control for a deficient intact retinal circuit, αRGCs of connexin 36 knockout (Cx36 KO) mice were used.The response of αRGCs varied significantly in terms of spikes, excitatory postsynaptic currents (EPSCs) and capacitances under stretching conditions to mimic myopia. Significant differences in the amplitudes of EPSCs were observed in the majority of αRGCs when exposed to focused and spherically defocused images in normal and mechanically simulated myopic retinas. However, this difference was not observed in αRGCs of Cx36 KO mice. αRGCs demonstrated significant differences in response between focused and astigmatically defocused images. Once again, αRGCs of Cx36 KO mice did not display differences.αRGCs have the ability to detect focused, spherically, and astigmatically defocused images and exhibit differential responses ex vivo. Gap junction subunit Cx36 may play a crucial role in transmitting visual signals associated with developing and perceiving refractive errors.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call