Abstract

There has been extensive research on local and systemic oxidative stress and immunosuppression in cadmium exposed crustaceans, but the underlying mechanisms remain to be elucidated. Because of multiple functions of epithelial cells, such as storing and detoxifying heavy metals, producing and secreting immune-related molecules (i.e. hemocyanin, NF-κB and CBS/H2S et al.), hepatopancreas may play an important role in immune system. In the present study, as an indication of systemic and local immune status in crayfish Procambarus clarkii, the relationship between PO activities in haemolymph and levels of CBS/H2S/NF-κBp65 in hepatopancreas was evaluated following a 96 h exposure to sub-lethal Cd2+ concentrations (1/40, 1/8 and 1/4 of the 96 h LC50). The results indicated that there was a significant increase in ROS contents accompanied by markedly decreased THC and PO levels (P < 0.01) in a dose- and time- dependent manner. The evolutionarily conserved CBS and NF-κB p65 showed obvious difference (P < 0.01) (including cellular distribution and expression level) between the healthy and pathological conditions based on IHC analysis. Even small change of endogenous H2S content may be closely related to NF-κB p65 level and PO activity (P < 0.01). There was significantly negative correlation (P < 0.05) between PO activity and expression levels of CBS and NF-κB p65. Obviously, crayfish innate immunity was a highly complex network of various cells, molecules, and signaling pathways which operate, at least partly, through small signaling molecules such as H2S. ROS-mediated CBS/H2S/NF-κB pathway probably allowed hepatopancreas to inhibit PO activity under cadmium stress.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call