Abstract

Fibronectin (fn) is an extracellular matrix (ECM) molecule important in cell adhesion and migration and in wound healing. It is also likely important in periodontal ligament (PDL) cell-ECM interactions, and thus in regenerating periodontal tissues. In this study we characterized PDL cells and their interactions with FN, testing different PDL cell isolates taken from healthy and diseased conditions. PDL cells were characterized by their morphology, integrin profile, motility, and bone nodule formation. Cells were then assayed for adhesion, proliferation, and chemotaxis in response to FN or FN fragments. Cell isolates were morphologically heterogeneous and fibroblastic, had a normal-appearing actin cytoskeleton and a wide range of migration potentials, and formed bone-like nodules in vitro. They expressed alpha5, beta1, alpha v, and alpha4 integrin subunits, known receptors for FN, and in fact they bound FN preferentially at 5 and 10 microg/ml. Intact FN induced greater PDL cell proliferation and chemotaxis than did FN fragments (120-kDa cell-binding, 60-kDa heparin-binding, and 45-kDa collagen-binding). PDL cells harvested from diseased and healthy conditions were no different on the basis of these assays. These data demonstrate that PDL cells are a mixed population of fibroblastic cells, capable of forming a mineralized matrix. They also suggest that maximal proliferation and chemotaxis require specific FN domains that are present on the intact molecule but not its fragments.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call