Abstract

The surface texture of titanium has a predictable effect on peri-implant tissue formation in vivo. When implanted in an osseous environment, smooth surfaces (R(a) < 0.5 mm) are generally apposed by fibrous tissue and textured surfaces (R(a) > 1.0 mm) are generally apposed by osseous tissue. Thus in vitro study assessed the mineralization and proliferation response of TF274, MC3T3-E1, murine femoral stromal cells and canine stromal cells to tissue culture plastic (R(a) = 0.001 mm), polished (R(a) = 0.01 mm) and irregularly textured (R(a) = 3.26 mm) titanium surfaces. Amongst all culture systems, proliferation was significantly decreased on textured vs. smooth surfaces. Midway through the culture of the canine marrow cells, the cell layer detached from the tissue culture plastic and polished titanium surfaces. The TF274, MC3T3-E1, murine femoral stromal cell systems formed a mineralized matrix on the tissue culture plastic and polished titanium surfaces which was not observed with the canine stromal cell system. Compared to the tissue culture plastic and polished titanium surfaces, matrix mineralization was significantly reduced on the textured titanium surfaces for the TF274, MC3T3-E1, murine femoral stromal systems, a result which was differed significantly in comparison to the canine stromal system. These results were surprising given the large number of reports concerning the in vivo response to titanium in clinical and pre-clinical studies. Further work is required to determine if the TF274, MC3T3-E1 and murine femoral stromal systems are suitable for the in vitro investigation of the effects of titanium surface texture on osteoblast activity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.