Abstract

The effects of the spatial variability of ground motion (loss of coherence, wave passage, and local site conditions) on the response of isolated bridges are investigated. Therefore, a statistical approach is adopted to represent uncertainties in both the bridge configuration and the ground motion variability. The response of isolated bridges, designed for a standard input motion, under a spatially varying ground motion, is evaluated by nonlinear time-history analyses; the system performance is measured by the displacement demand on isolators. Results show that the phenomenon affects the structural response considerably; the demand increases for the majority of isolators, irrespective of bridge configuration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.