Abstract

AbstractA soil's responses to phosphorus (P) input differs based on its chemical composition. Soil acidity and the presence of metallic cations dictate a soil's chemical composition. Currently, soil P application recommendations are universal and do not account for differing soil composition. A targeted soil‐specific approach is required to optimize P efficiency and availability. A pot incubation experiment was established to explore the effects of contrasting lime and P application rates across a range of soils (25), characterized by fine particle size and high levels of soil organic matter. Three contrasting rates of P were applied (0, 50, and 150 kg P ha−1) both with and without ground lime (CaCO3) at 5 tonne ha−1 over a 140‐day incubation period. The addition of lime buffered the soil, increasing nutrient availability and reducing P fixation. The 50 kg P ha−1 treatment rate was required to achieve sufficient plant available P in both mineral soil textural classes. Current legislative recommendations however do not allow the application of such rates, which has an impact on agronomic performance. Loam soils experienced a greater increase in M3 soil P in comparison to clay and organic soils. Organic soils posed a major threat to water quality due to poor P retention. A re‐evaluation of P recommendations is required to account for soil variability as current P allowances are insufficient on these particular soils.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.