Abstract

Elevated atmospheric CO2 (eCO2 ) typically increases aboveground growth in both growth chamber and free-air carbon enrichment (FACE) studies. Here we report on the impacts of eCO2 and nitrogen amendment on coarse root biomass and net primary productivity (NPP) at the Duke FACE study, where half of the eight plots in a 30-year-old loblolly pine (Pinus taeda, L.) plantation, including competing naturally regenerated broadleaved species, were subjected to eCO2 (ambient, aCO2 plus 200ppm) for 15-17years, combined with annual nitrogen amendments (11.2gNm-2 ) for 6years. Allometric equations were developed following harvest to estimate coarse root (>2mm diameter) biomass. Pine root biomass under eCO2 increased 32%, 1.80kgm-2 above the 5.66kgm-2 observed in aCO2 , largely accumulating in the top 30cm of soil. In contrast, eCO2 increased broadleaved root biomass more than twofold (aCO2 : 0.81, eCO2 : 2.07kgm-2 ), primarily accumulating in the 30-60cm soil depth. Combined, pine and broadleaved root biomass increased 3.08kgm-2 over aCO2 of 6.46kgm-2 , a 48% increase. Elevated CO2 did not increase pine root:shoot ratio (average 0.24) but increased the ratio from 0.57 to 1.12 in broadleaved species. Averaged over the study (1997-2010), eCO2 increased pine, broadleaved and total coarse root NPP by 49%, 373% and 86% respectively. Nitrogen amendment had smaller effects on any component, singly or interacting with eCO2 . A sustained increase in root NPP under eCO2 over the study period indicates that soil nutrients were sufficient to maintain root growth response to eCO2 . These responses must be considered in computing coarse root carbon sequestration of the extensive southern pine and similar forests, and in modelling the responses of coarse root biomass of pine-broadleaved forests to CO2 concentration over a range of soil N availability.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call