Abstract

The aim of this study was to enhance cytocompatibility of titanium substrates by loading a multilayer film of chitosan (Chi), gelatin (Gel) and simvastatin (SV). This was fabricated using a spin-assisted layer-by-layer (LBL) technique. The surface properties of the different substrates were characterized by field emission scanning electron microscopy (FE-SEM), atomic force microscope (AFM), X-ray photoelectron spectroscopy (XPS) and contact angle measurement, respectively. Simvastatin release in vitro was measured by ultraviolet-visible spectrophotometer. A well morphology with filopodia extensions was observed in mesenchymal stem cells (MSCs) grown on simvastatin loaded multilayered films-modified titanium substrates. After 7, 14 and 21 days of culture, the simvastatin loaded multilayered films increased cell proliferation, improved osteoblastic differentiation of alkaline phosphatase (ALP) and mineralization. Additionally, osteoclast diffentiation marker tartrate-resistant acid phosphatase (TRAP) was decreased in simvastatin loaded multilayered films. This study provides a new insight for the fabrication of titanium-based implants to enhance osseointegration especially for osteoporosis patients in orthopedic application.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call