Abstract

The response of control and ataxia-telangiectasia (A-T) cells to increasing doses of high-linear-energy-transfer (LET) ionizing radiation (neutrons) was compared. Ataxia-telangiectasia cells were markedly more sensitive to neutron irradiation than were control cells. The D0 value for the two A-T cell lines was 0.4 Gy while the value for controls was approximately 1.4 Gy. Fast neutrons were considerably more effective than gamma rays in inducing cell death in both cell types, but the sensitivity factor remained approximately the same as with gamma rays. A minimal depression of DNA synthesis was observed in ataxia-telangiectasia cells after neutron irradiation, similar to that reported previously after gamma irradiation. The extent of inhibition was not significantly greater in control cells, contrary to that seen with gamma rays. In time-course experiments a significant difference in degree of inhibition of DNA synthesis was observed between the cell types. Low doses of fast neutrons induced a G2-phase delay in both cell types, but the degree and extent of this delay was greater in ataxia-telangiectasia cells as observed previously with low-LET radiation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call