Abstract

Abstract An axisymmetric, multilayer, numerical tropical cyclone model with a well-resolved planetary boundary layer is used to test the response of local, instantaneous changes of sea surface temperature (SST). One experiment shows that the storm's intensity is steadily decreased as the SST in the inner 300 km is instantaneously cooled by 2°C. However, in the second experiment, in which the SST is cooled by 2°C outside the radius of 300 km, the storm shows no immediate and appreciable weakening. The intensity of the tropical cyclone in this case is maintained by enhanced evaporation in the inner 300 km and increased baroclinicity.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.