Abstract

Measurements have been made in the flow over an axisymmetric cylinder-flare body, in which the boundary layer developed in axial flow over a circular cylinder before diverging over a conical flare. The lateral divergence, and the concave curvature in the transition section between the cylinder and the flare, both tend to destabilize the turbulence. Well downstream of the transition section, the changes in turbulence structure are still significant and can be attributed to lateral divergence alone. The results confirm that lateral divergence alters the structural parameters in much the same way as longitudinal curvature, and can be allowed for by similar empirical formulae. The interaction between curvature and divergence effects in the transition section leads to qualitative differences between the behaviour of the present flow, in which the turbulence intensity is increased everywhere, and the results of Smits, Young & Bradshaw (1979) for a two-dimensional flow with the same curvature but no divergence, in which an unexpected collapse of the turbulence occurred downstream of the curved region.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.