Abstract

The response of a poroelastic ice cover to an external load is considered. The ice cover is modeled by a thin poroelastic floating plate within the linear theory of hydroelasticity. The porosity parameter is defined as the coefficient of proportionality of the velocity of liquid penetration into the plate and hydrodynamic pressure. The fluid under the plate is inviscid and incompressible. The flow caused by the ice deflection is potential. The external load is modeled by a localized smooth pressure. The two-dimensional problem of waves caused by a periodic external pressure on a floating porous-elastic plate is considered. The profiles of the generated waves are calculated for a given oscillation frequency of the amplitude of the external pressure. It was found that taking porosity into account leads to damping of oscillations in a distance from the external load

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.