Abstract

This paper reports for the first time upon the effects of increasing CO2 concentrations on a natural phytoplankton assemblage in a tropical estuary (the Godavari River Estuary in India). Two short-term (5-day) bottle experiments were conducted (with and without nutrient addition) during the pre-monsoon season when the partial pressure of CO2 in the surface water is quite low. The results reveal that the concentrations of total chlorophyll, the phytoplankton growth rate, the concentrations of particulate organic matter, the photosynthetic oxygen evolution rates, and the total bacterial count were higher under elevated CO2 treatments, as compared to ambient conditions (control). δ13C of particulate organic matter (POM) varied inversely with respect to CO2, indicating a clear signature of higher CO2 influx under the elevated CO2 levels. Whereas, δ13CPOM in the controls indicated the existence of an active bicarbonate transport system under limited CO2 supply. A considerable change in phytoplankton community structure was noticed, with marker pigment analysis by HPLC revealing that cyanobacteria were dominant over diatoms as CO2 concentrations increased. A mass balance calculation indicated that insufficient nutrients (N, P and Si) might have inhibited diatom growth compared to cyanobacteria, regardless of increased CO2 supply. The present study suggests that CO2 concentration and nutrient supply could have significant effects on phytoplankton physiology and community composition for natural phytoplankton communities in this region. However, this work was conducted during a non-discharge period (nutrient-limited conditions) and the responses of phytoplankton to increasing CO2 might not necessarily be the same during other seasons with high physicochemical variability. Further investigation is therefore needed.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.