Abstract
A coupled ocean-atmosphere general circulation model has been developed for TOGA related problems. The coupled model consists of an ocean model of the tropical Pacific and a global low-order spectral atmosphere model. The two models interact via wind stress and sea surface temperature. In order to avoid a climate drift within the coupled model, a flux correction method is applied.Experiments were performed by introducing a westerly wind stress burst over the western equatorial Pacific for one month. Thereafter, the wind burst is turned off and the response of the coupled model to the initial disturbance is investigated. The results are compared with the response of the ocean model run with the same disturbance in an uncoupled mode.It is shown that the coupling leads to a significant increase of the duration of anomalous conditions in the ocean. SST anomalies persist for about 12 months in the coupled run, while they have already disappeared after 4 months in the uncoupled case. The increase in persistence is due to the feedback of the atmosphere, which responds with an eastward shift of the ascending branch of the Walker Circulation.In a second experiment with the coupled model the initial disturbance was introduced within another season. The results show no basic differences to the results of the first experiment.An interesting result of the coupled model runs is the occurrence of spontaneous westerly wind bursts over the western Pacific, which developed by internal dynamics. Location and duration of these spontaneous wind bursts show some correspondence with the time-space structure of observed westerly wind stress episodes over the western Pacific.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.