Abstract

Human neutrophils (PMN) have received little attention as to the role they play in host defense against Histoplasma capsulatum (Hc). We have characterized the binding and phagocytosis of Hc yeasts by human PMN and quantified the PMN respiratory burst in response to this organism. mAb specific for CD11a, CD11b, and CD11c all partially blocked the attachment of unopsonized yeasts to PMN; a mAb to CD18 inhibited attachment by greater than 90%. Thus, human PMN recognize and bind Hc yeasts via CD18 adhesion receptors as has been found for human cultured macrophages and alveolar macrophages. Unopsonized yeasts were phagocytosed by PMN, but phagocytosis was increased markedly by heat-labile and heat-stable serum opsonins. These opsonins promoted enhanced phagocytosis of yeasts by increasing the attachment of Hc yeasts to the PMN membrane. Phagocytosis of viable or heat-killed Hc yeasts by PMN did not induce the secretion of superoxide anion (O2-) as quantified by the reduction of cytochrome c. O2- was not detected when yeasts were opsonized in normal serum or immune serum, or at a ratio of yeasts to PMN of up to a 100:1. However, phagocytosis of opsonized yeasts by PMN did not prevent them from subsequently releasing O2- after further incubation with opsonized zymosan or PMA. Opsonized Hc yeasts clearly stimulated the PMN respiratory burst as quantified by intracellular reduction of nitroblue tetrazolium, reduction of cytochrome c in the presence of cytochalasin D, oxygen consumption, luminol-enhanced and nonenhanced chemiluminescence, and H2O2 production. These data suggest that phagocytosis of Hc yeasts by PMN is associated with intracellular entrapment of O2- that is not detectable by reduction of extracellular cytochrome c.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.