Abstract

We investigate respectively the effects of direct and indirect couplings on electromagnetically induced transparency (EIT)-like in a Metal–Insulator–Metal (MIM) bus waveguide coupled to two aperture-resonators (ARS). Adjusting the intensity of direct and indirect couplings, we can intentionally realize, modulate and eliminate the EIT-like transmission in the proposed plasmonic structures. The consistency between theoretical results and finite-difference time-domain (FDTD) simulations indicates that the direct coupling can give rise to EIT-like phenomenon in symmetrical structure. Moreover, the EIT-like transmission dips can be shifted back to the original resonant frequency when the two couplings offset each other. These results may provide a helpful guideline for the control of light in highly integrated optical circuits.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.