Abstract

In this contribution, we report a computational study of the vibrational Resonance Raman (vRR) spectra of cytosine in water, on the grounds of potential energy surfaces (PES) computed by time-dependent density functional theory (TD-DFT) and CAM-B3LYP and PBE0 functionals. Cytosine is interesting because it is characterized by several close-lying and coupled electronic states, challenging the approach commonly used to compute the vRR for systems where the excitation frequency is in quasi-resonance with a single state. We adopt two recently developed time-dependent approaches, based either on quantum dynamical numerical propagations of vibronic wavepackets on coupled PES or on analytical correlation functions for cases in which inter-state couplings were neglected. In this way, we compute the vRR spectra, considering the quasi-resonance with the eight lowest-energy excited states, disentangling the role of their inter-state couplings from the mere interference of their different contributions to the transition polarizability. We show that these effects are only moderate in the excitation energy range explored by experiments, where the spectral patterns can be rationalized from the simple analysis of displacements of the equilibrium positions along the different states. Conversely, at higher energies, interference and inter-state couplings play a major role, and the adoption of a fully non-adiabatic approach is strongly recommended. We also investigate the effect of specific solute-solvent interactions on the vRR spectra, by considering a cluster of cytosine, hydrogen-bonded by six water molecules, and embedded in a polarizable continuum. We show that their inclusion remarkably improves the agreement with the experiments, mainly altering the composition of the normal modes, in terms of internal valence coordinates. We also document cases, mostly for low-frequency modes, in which a cluster model is not sufficient, and more elaborate mixed quantum classical approaches, in explicit solvent models, need to be applied.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.