Abstract
A description of the theory and numerical implementation of a 3-D linearized asymptotic anisotropic inversion method based on the generalized Radon transform is given. We discuss implementation aspects, including (1) the use of various coordinate systems, (2) regularization by both spectral and Bayesian statistical techniques, and (3) the effects of limited acquisition apertures on inversion. We give applications of the theory in which well‐resolved parameter combinations are determined for particular experimental geometries and illustrate the interdependence of parameter and spatial resolutions. Procedures for evaluating uncertainties in the parameter estimates that result from the inversion are derived and demonstrated.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.