Abstract

Abstract The unique stress-strain behavior of a carbon-black-loaded elastomer is due to the presence of a rigid, particulate phase, but also to the interaction of the elastomer chains with the filler. It is postulated that this interaction takes the form of adsorption on the filler-particle surface, which results in trapped entanglements. Upon deformation, the trapped chains are aligned parallel to the axis of stress. Thus, a practical stress-strain relationship could be developed which is capable to model the stress-strain behavior of compounds over the full range of extensions up to break. The analysis of a highly prestrained carbon-black-loaded NR compound in which the entanglement effect had been mechanically destroyed, demonstrated that the “sea-island” (SIP) coupling arrangement is most suitable for accounting for the interaction effect of the elastomer and carbon black. For moderately prestrained carbon-black-loaded NR and BR compounds a good fit of theory to experiment is obtained for a combination of the SIP coupling arrangement and the specially derived stress-strain relationship. Thus, a practical method is available for describing the deformation of carbon-black-loaded elastomers and for the modelling of carbon-black-loaded elastomer blends.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call