Abstract

The resistive switching memory device based on nanocomposites has become a potential candidate in the data storage field. Understanding resistive switching characteristics and electrical conduction mechanisms may support the appropriate way to fabricate and control the operation of a device. In this study, a capacitor-like structure using PVA-ZnO as an insulator layer was fabricated by a solution method. The crystalline structure, morphology, and absorption spectrum of ZnO nanoparticles were revealed respectively. The resistive switching effect was observed with the ON/OFF ratio of 0.5´102, high endurance, excellent retention and the electrical transport mechanisms were followed by the SCLC and Ohmic’s law in the low resistance state and Flower- Nordheim tunneling in the high resistance state. The resistive switching mechanism was contributed by the oxygen vacancies in ZnO nanoparticles and the oxygen ions in the bottom electrode.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.