Abstract

The treatment of NO x has become an urgent issue due to it being difficult to degrade in air and its tremendous adverse impact on public health. Among numerous NO x emission control technologies, the technology of selective catalytic reduction (SCR) using ammonia (NH3) as the reducing agent (NH3-SCR) is regarded as the most effective and promising technique. However, the development and application of high-efficiency catalysts is severely limited due to the poisoning and deactivation effect by SO2 and H2O vapor in the low-temperature NH3-SCR technology. In this review, recent advances in the catalytic effects from increasing the rate of the activity in low-temperature NH3-SCR by manganese-based catalysts and the stability of resistance to H2O and SO2 during catalytic denitration are reviewed. In addition, the denitration reaction mechanism, metal modification, preparation methods, and structures of the catalyst are highlighted, and the challenges and potential solutions for the design of a catalytic system for degenerating NO x over Mn-based catalysts with high resistance of SO2 and H2O are discussed in detail.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.