Abstract

This article deals with the determination of technically important properties, the recognition of microstructure and pore structure, and the mortar resistance of a new cement kind NONRIVAL CEM I 52.5 N containing 7.94% wt. of C3A to 5% sodium sulfate solution. Both reference types of cement were industrially manufactured: 1) ordinary Portland cement CEM I 42.5 R and 2) Portland cement CEM I 42.5 R – SR 0, declared as sulfate resistant because of C3A = 0%. The research was carried out at standardized mortars. The used sodium sulfate solution, which contained 33802.8 mg of aggressive SO42− per liter, exceeded approximately 5 to 10 times the concentration of the third degree of aggressiveness of the XA chemical environment according to STN EN 206 + A1. The reference medium was drinking water. The 5-year results of non-destructive and destructive physical-mechanical tests as well as the formed microstructure and pore structure in both liquid media were evaluated. The cause of the NONRIVAL CEM I 52.5 N sulfate resistance was explained, despite the manufacturer’s declared C3A content of up to 8% by weight. Sulfate resistance of NONRIVAL CEM I 52.5 N is found comparable to that of sulfate resistant CEM I 42.5 R – SR 0.

Highlights

  • A sulfate attack represents one of the most aggressive ways of acting on concrete, which worsens the durability of the structures

  • All types of cement meet the requirements for chemical properties, which are given as characteristic values in STN EN 197–1 [4] based on a loss on ignition (LOI), which is less than 5% by weight, an insoluble residue, which is less than 5% by weight, a sulfate content of less than 4% by weight and a chloride content of less than 0.10% wt

  • The cause lies in the thorough elimination of Ca(OH)2 formation by the active submicron-based pozzolanic addition

Read more

Summary

Introduction

A sulfate attack represents one of the most aggressive ways of acting on concrete, which worsens the durability of the structures. The resistance of concrete is increased by using durable types of cement compared to Portland, such as pozzolanic cement when natural or industrial pozzolans are added. S., Ladce has developed a new type Portland cement, designated as NONRIVAL CEM I 52.5 N, which does not meet the criteria for sulfate-resistant cement according to the requirements of STN EN 197–1 [4]. It is necessary to study the sulfate attack on cementbased mortar by assessing its physical properties and by analyzing a microstructure and pore structure [6]. The condition of the pore structure of concrete is an important criterion for assessing sulfate resistance as its strength, as it determines the permeability for the penetration of aggressive solution into the interior of the microstructure formed over time

Methods
Results
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.