Abstract

The two most important tasks of ice breaking ships are first to secure a sailing route by breaking the thick sea ice and second to sail efficiently herself for purposes of exploration and transportation in the polar seas. The resistance of ice breaking ships is a priority factor at the preliminary design stage; not only must their sailing efficiency be satisfied, but the design of the propulsion system will be directly affected. Therefore, the performance of ice-breaking ships must be accurately calculated and evaluated through the use of model tests in an ice model basin before construction starts. In this paper, a new procedure is developed, based on model tests, to estimate a ship’s ice resistance during continuous icebreaking in level ice. Some of the factors associated with crushing failures are systematically considered in order to correctly estimate her ice-breaking resistance, while the effects of the hull geometry, as reflected in the length, breadth, and draft of ships, are considered in calculating buoyancy and clearing resistance. Multiple regression analysis is calculated with each ice resistance component. This study is intended to contribute to the improvement of the techniques for ice resistance prediction with ice breaking ships.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call