Abstract

ABSTRACT The acceleration resistance of a vessel advancing in shallow water is investigated. Four acceleration intensities and two water depths are modelled using the CFD and potential flow methods. The results show a pronounced peak in resistance exists near the critical depth Froude number, but its location and magnitude are sensitive to the acceleration intensity and water depth. Excellent agreement between the results obtained from the CFD and potential flow methods is found in the low and high depth Froude number ranges regardless of water depth or acceleration, indicating that linear and unsteady methods can provide robust results at a low cost in those ranges. The magnitude of the resistance peak and its position are sensitive to nonlinear effects, evidenced by slight disagreements between the two adopted methodologies. The variation in the results produced by the two solvers is found to be sensitive to the parameters investigated.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.