Abstract

The 2009/2010 extreme drought in southwest China (SWC) was a “once-in-a-century” drought event, which caused unprecedented damage to the regional ecology and socioeconomic development. The event provided a chance to explore the resilience of vegetation growth and productivity to the extreme drought. Here, we used the self-calibrating Palmer drought severity index (scPDSI) to describe the characteristics of the extreme drought. Vegetation growth and productivity indices, including the normalized difference vegetation index (NDVI), leaf area index (LAI), and gross primary productivity (GPP), were applied to analyze the resilience of different vegetation types to the extreme drought. Our results showed that the extreme drought event occurred mainly in Yunnan Province, Guizhou Province, central and northern Guangxi Zhuang Autonomous Region, and northwestern Sichuan Province. The spatial heterogeneity of the extreme drought was related to the temperature increase and water deficit. During the extreme drought, the vegetation growth and productivity of evergreen broadleaf forest were the least suppressed, whereas cropland was greatly suppressed. The recovery of cropland was higher than that of evergreen broadleaf forest. NDVI and LAI were recovered in more than 80% of the drought-affected area within 5 months, whereas GPP required a longer time to recover. Moreover, the results of multiple linear regression showed that an increase in surface soil moisture was able to significantly improve the resistance of vegetation NDVI and LAI in evergreen broadleaf forest, evergreen needleleaf forest, evergreen broadleaf shrubland, deciduous broadleaf shrubland, and grassland. Our study highlights the differences in the resilience of different vegetation types to extreme drought and indicates that surface soil moisture is an important factor affecting vegetation resistance in SWC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.