Abstract

Unmanned aerial vehicle (UAV) swarms serve as a dynamic platform for diverse missions, including communication relays, search and rescue operations, and environmental monitoring. The success of these operations crucially depends on the resilience of their electrical support systems, especially in terms of battery management. This paper examines the reliability of electrical support for UAV swarms engaged in missions that require prioritization into high and low categories. The paper proposes a dynamic resource allocation strategy that permits the flexible reassignment of drones across different-priority tasks, ensuring continuous operation while optimizing resource use. By leveraging the Markov chain theory, an analytical model for the evaluation of the resilience of the battery management system under different operational scenarios was developed. The paper quantitatively assesses the impact of different operational strategies and battery management approaches on the overall system resilience and mission efficacy. This approach aims to ensure uninterrupted service delivery for critical tasks while optimizing the overall utilization of available electrical resources. Through modeling and analytical evaluations, the paper quantifies the impact of various parameters and operating strategies on overall system resilience and mission availability, considering the utilization strategies of batteries and their reliability and maintenance metrics. The developed models and strategies can inform the development of robust battery management protocols, resource allocation algorithms, and mission planning frameworks, ultimately enhancing the operational availability and effectiveness of UAV swarms in critical special missions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.