Abstract

An experimental investigation and comparative analysis of the residual stress state between micro- and meso-milling processes with a ball-end mill on the Ti–6Al–4V titanium alloy were carried out. A methodology to study the characteristic kinematics of a five‑axis machining process in a three-axis vertical machining centre was proposed. The study considers the chip formation process according to the lead and tilt angles of the tool axis concerning the normal vector of the surface. When using the up‑milling cutting strategy, the defect of smeared/adhered material to the surface occurs in both the micro- and meso-milling levels, associated with the build-up edge and build-up layer phenomenon. The residual stress tensor of the surface was obtained through the X-ray diffraction technique. The down-milling cutting strategy produced the best surface finish and higher compressive residual stresses. The experiments showed higher compressive residual stresses in the feed direction than in the cross-feed direction. The micro-milling process produced higher compressive residual stresses than those observed in the meso-milling process.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.