Abstract

The residual dipole moment of the outer spherical shell of the Moon, magnetized in the field of an internal dipole is calculated for the case when the permeability of the shell differs from unity. It is shown that, using an average value of surface magnetization from returned lunar crystalline rock samples and a global figure for the lunar permeability of 1.012, that a residual moment of the order of 1015 to 1016 Am2 is expected. This value is some two or three orders of magnitude lower than the moment for a shell magnetized in an external uniform field and is of the same order as the upper limit of the residual moment detected by Russellet al. (1974). At present the magnetic data and the thermal state of the Moon are not known with sufficient accuracy to distinguish between a crust magnetized in an internal dipole field of constant polarity and a crust magnetized in the dipole field of a self-reversing core dynamo. Refined measurements of the relevant parameters together with the theory presented in this paper could enable these two possibilities to be distinguished.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.