Abstract
The following theorem is proved: LetG be any group. Then the augmentation ideal ofZG is residually nilpotent if and only ifG is approximated by nilpotent groups without torsion or discriminated by nilpotent pi,-groups,i ∈I, of finite exponents. This theorem is applied to obtain conditions under which the groupsF/N′ are residually nilpotent whereF is a free non-cyclic group and N◃F.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.