Abstract

We employ reservoir computing for a reconstruction task in coupled chaotic systems, across a range of dynamical relationships including generalized synchronization. For a drive-response setup, a temporal representation of the synchronized state is discussed as an alternative to the known instantaneous form. The reservoir has access to both representations through its fading memory property, each with advantages in different dynamical regimes. We also extract signatures of the maximal conditional Lyapunov exponent in the performance of variations of the reservoir topology. Moreover, the reservoir model reproduces different levels of consistency where there is no synchronization. In a bidirectional coupling setup, high reconstruction accuracy is achieved despite poor observability and independent of generalized synchronization.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.