Abstract

BackgroundLeafy spurge (Euphorbia esula L.) is a herbaceous perennial weed and dormancy in both buds and seeds is an important survival mechanism. Bud dormancy in leafy spurge exhibits three well-defined phases of para-, endo- and ecodormancy; however, seed dormancy for leafy spurge is classified as physiological dormancy that requires after-ripening and alternating temperature for maximal germination. Overlaps in transcriptome profiles between different phases of bud and seed dormancy have not been determined. Thus, we compared various phases of dormancy between seeds and buds to identify common genes and molecular processes, which should provide new insights about common regulators of dormancy.ResultsCluster analysis of expression profiles for 201 selected genes indicated bud and seed samples clustered separately. Direct comparisons between buds and seeds are additionally complicated since seeds incubated at a constant temperature of 20°C for 21 days (21d C) could be considered paradormant (Para) because seeds may be inhibited by endosperm-generated signals, or ecodormant (Eco) because seeds germinate after being subjected to alternating temperature of 20:30°C. Since direct comparisons in gene expression between buds and seeds were problematic, we instead examined commonalities in differentially-expressed genes associated with different phases of dormancy. Comparison between buds and seeds (‘Para to Endo buds’ and ‘21d C to 1d C seeds’), using endodormant buds (Endo) and dormant seeds (1d C) as common baselines, identified transcripts associated with cell cycle (HisH4), stress response/transcription factors (ICE2, ERFB4/ABR1), ABA and auxin response (ABA1, ARF1, IAA7, TFL1), carbohydrate/protein degradation (GAPDH_1), and transport (ABCB2). Comparison of transcript abundance for the ‘Eco to Endo buds’ and ‘21d C to 1d C seeds’ identified transcripts associated with ABA response (ATEM6), auxin response (ARF1), and cell cycle (HisH4). These results indicate that the physiological state of 21d C seeds is more analogous to paradormant buds than that of ecodormant buds.ConclusionCombined results indicate that common molecular mechanisms associated with dormancy transitions of buds and seeds involve processes associated with ABA and auxin signaling and transport, cell cycle, and AP2/ERF transcription factors or their up-stream regulators.Electronic supplementary materialThe online version of this article (doi:10.1186/s12870-014-0216-4) contains supplementary material, which is available to authorized users.

Highlights

  • Leafy spurge (Euphorbia esula L.) is a herbaceous perennial weed and dormancy in both buds and seeds is an important survival mechanism

  • Quantitative real time - polymerase chain reaction This study compared various phases of dormancy between crown buds and seeds using physiologically analogous dormancy conditions based on information obtained through previous dormancy studies in leafy spurge buds and seeds

  • Two hundred and one leafy spurge homologs of Arabidopsis genes involved in growth, hormone, light, and temperature response/regulation were selected for analysis (Additional file 1: Table S1)

Read more

Summary

Introduction

Leafy spurge (Euphorbia esula L.) is a herbaceous perennial weed and dormancy in both buds and seeds is an important survival mechanism. Bud dormancy in leafy spurge exhibits three well-defined phases of para-, endo- and ecodormancy; seed dormancy for leafy spurge is classified as physiological dormancy that requires after-ripening and alternating temperature for maximal germination. Vegetative reproduction from an abundance of underground adventitious buds (often referred to as crown and root buds) and sexual reproduction through seeds allow leafy spurge to persist and spread. Dormancy in both buds and seeds is an important survival mechanism for leafy spurge and many other invasive perennial weeds. Dormant leafy spurge seeds do not germinate at constant temperatures of 20°C or 30°C, but imbibing seeds for 21 days at constant temperature (20°C) followed by an alternating temperature (20:30°C) treatment increases germination to over 60% in 10 days [8]

Methods
Results
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call