Abstract

Chalcone isomerase (CHI) is the second rate-limiting and the first reported enzyme involved in the biosynthetic pathway of flavonoids. It catalyzes the intramolecular cyclization reaction, converting the bicyclic chalcone into tricyclic (2S)-flavanone. In this paper, we obtained and analyzed 916 DNA sequences, 1310 mRNA sequences, and 2403 amino acid sequences of CHI registered in NCBI by Jan 2018. The full length of CHI DNA sequences ranges from 218 to 3758bp, CHI mRNA sequences ranges from 265 to 1436bp, and CHI amino acid sequences ranges from 35 to 465 amino acid residues. Forty representative species were selected from each family to construct the maximum likelihood tree and analyze the evolutionary relationship. According to the medicinal and agricultural use, 13 specific species were selected, and their physicochemical properties were analyzed. The molecular weight of CHI ranges from 23 to 26kD, and the isoelectric point of CHI ranges from 4.93 to 5.85. All the half-life periods of CHI are 30h in mammalian reticulocytes in vitro, 20h in yeast, and 10h in E. coli in vivo, theoretically. The consistency of the 13 CHI amino acid sequences is 63.55%. According to the similarity between each sequence, we selected four CHI sequences of Paeonia suffruticosa, Paeonia lactiflora, Taxus wallichiana, and Tradescantia hirsutiflora for secondary structure, three-dimensional protein models, conserved domains, transmembrane structure, and signal peptide prediction analysis. It was found that CHI sequences of Paeonia suffruticosa and Paeonia lactiflora owned a higher similarity; they both share the template 4doi.1.A. The four CHI all have no signal peptides, and they exert their activities in cytoplasm. Then, PubMed, Web of Science, Science Direct, and Research Gate were used as information sources through the search terms 'chalcone isomerase', 'biosynthesis', 'expression', and their combinations to get the latest and comprehensive information of CHI, mainly from the year 2010 to 2018. More than 300 papers were searched and 116 papers were reviewed in the present work. We summarized the classification of CHI, catalytic reaction mechanism of CHI, and progress of genetic engineering regarding CHI clone, expression, and exogenous stimulator regulation. This paper will lay a foundation for further studies of CHI and other functional genes involved in flavonoids biosynthetic pathway.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call