Abstract

Using a dynamical model for nutrient cycling in shallow lakes, the approach of conditional nonlinear optimal perturbation (CNOP) was adopted to investigate the instability and the sensitivity of the lake ecosystem to finite-amplitude perturbations both related to the initial condition and the parameter. The results show that the ecosystem can be transformed from an oligotrophic (eutrophic) state to an eutrophic (oligotrophic) state with a CNOP as the perturbation, no matter how large the nutrient loading rate is. Above all, with the same restraints related to the initial perturbation and the parameter perturbation, CNOP has the largest effect on the lake ecosystem, which may be helpful to govern the lake ecosystem.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.