Abstract
Many questions in natural science and engineering are transformed into nonlinear equations to be found. Newton iterative method is an important technique to one dimensional and multidimensional variables and iterative process exhibits sensitive dependence on initial guess point. The probability characteristic of hyper-chaotic sequences produced by two dimensional hyper-chaotic discrete systems was analyzed. For the first time, a new method to find all solutions based on utilizing two dimensional probability hyper-chaotic discrete mapping to obtain initial points to find all solutions of the nonlinear questions was proposed. The numerical examples in linkage synthesis and approximate synthesis show that the method is correct and effective.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.