Abstract

This paper is devoted to studying influences of matrix/particle interface debonding and particulate size in micromechanical predictions of the effective moduli of particulate reinforced polymer composites (PRPC). The PRPC is regarded as a three-phase composite that includes the matrix, particle and interphase. The formulation for the effective moduli of the interphase is derived by the cohesive zone model, and combined with the Mori-Tanaka method, the micromechanical model for the effective moduli of the PRPC is formulated with emphasis on the effects of the matrix/particle interface, particulate size and volume fraction. The numerical example shows that the interface debonding, the particulate size and volume fraction have significant influences on the effective moduli of PRPC. The effective moduli of the PRPC can be used to characterize its damage degree.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.